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THEORETICAL AND EXPERIMENTAL INVESTIGATION OF HEAT

TRANSFER BY LAMINAR NATURAL CONVECTION

BETWEEN PARALLEL PLATES ‘

By A. F. Lmrmm

SUMMARY

Re-suUs are premded of a theoretical and mperimw

investig~ion of heat tran8fer inoolvi~ luminar mztural con-

vection of$uiak enclosed Mween parallel walls oriented in the

direclian of tlu body force, wlure one waU h ?wa&d unifdy,

and the other is cooled uniformly. -F’or th-e experimental work,

parai!kl u.wlls were timw?uted by uA.g an annuk with an

inner-to-tier diameter ratw neur 1.

The re.wdts of the theoretical inm%tigdion are pre+wmtedin the

form of eguatti for the vekmity and temperature projila and

the r&o of actual temper~ure drop across the jfuid to the

temperatw-e drop for pure eonduc$ion. No tzpa-iti

mea-surement8 were made of the veloeiiy and temperdure projilex,

but th# Ezperimenid TeMd18 are compared &h theoqt on the

bmk of the ratio of the add temperature drop to the temperature

drop for pure conduction. Qood ~eement w obtaind

bdween theory and experimd for axial temperature gradi.em% of

Jo” 1’ pw foot or larger.

INTRODUCTION

Incrensed application of heat transfer to and tim fluids in
channels has recently required further knowledge as to the
heatXmnzfer coefficients and temperature proiiles occurring
with natural convection. Turbine-blade and nuclear-reactor
cooling are two of the fields concerned with this problem.
Work on free-convection heat transfer over a vertical plai%
gave good agreement between theory and experiment. Few
results have been obtained for the similar case of flow in
channels. Reference 1 obtains a theoretical solution for
free-convection heat transfer for fluids enclosed in channels.
The reference usesa postulated velocity distribution to obtain
a solution. References 2 and 3 extend this analytical work to
give an exact solution of the equation5 in more general form
for constant wall temperature and constant heat flux,
respectively. Reference 3 includes the eflect of forced as
well as natural convection. These three references treat the
case of infinite channels with the channel axis oriented in the
direction of the body force and are subject to the same
resumptions; namely, two-dimensional laminar flow, uniform
axial temperature gradient, and constant fluid properties,
except that the densib is allowed to vary in the bouyancy
term.

The purpose of this report is to compare the results of
theory and experiment as a check on the assumptions in-

volved in the analytical work. For mathematical simplicity,
the flow between two in.iiniteparallel plates was considered
with one plate heated uniformly and the other cooled uni-
formly. ,& exact solution was obtained with the ~P-
tions cited previously for refermces 1 to 3. In order to
simulate the case of inil.nite parallel plates experimentally,
an annulus formed by two concentric tubes was used. For
all practical purposes, the walls of these tubes can be con-
sidered parallel if the ratio of the radii of the tubes is near 1.
This radiuz ratio limits the spacing between the coniining
walls (and, consequently, the rrwge of Grashof numbers
obtainable) unless very large diameters are used.

A comparison between theory and experiment is given in
this report on q heat-transfer basis alone, since no temper-
ature or velocity proiile meruwrements were made. The
work was done at the IXTACALewis laborato~.

ANALYSIS

Steady-state heat transfer through a fluid enelosed by two
in.fhite parallel plates oriented in the direction of the body
force is considered. One plate is heated uniformly and the
other is cooled uniformly. The flow is lamimw and parallel
to the body force. The fluid properties are assumed con-
stant, except that the density is allowed to vary in the
buoyancy term. Viscous dissipation and work against the
force field are neglected. It is further assumed that the
axial temperature gradient is a constant throughout the
system for any particular set of conditions.

When the aforementioned conditions are applied, the
energy equation reduces to

(m)

(Symbols are defined in appendix A, and a detailed dis-
cussion of the analysis is given in appendix B.)

Similarly, the Navier4tokes’ equations reduce to one
equation in the z-direction: :.

The reference temperature tf is taken at the center of the
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For a closed system of unit width with zero net mass
through-flow and constant densi@,

J
r

Wax=o
-r

where z is taken to be zero at the center of the channel.
From these three equations and the appropriate boundmy

conditions
ix()

~t
TX ..r=-T- Ws.,=o

1 at()
~,

z *.,=–7 U&-r=o

the equations for the velocity and temperature profiles in
dimensionless form are, respectively,

(sin ‘; cosh ~ Sinh; Cos:
W*=4V

sin v cosh V—Sillh O

)

(B17)
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cm v
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(Sinh v cm V+sinh ; Cos ;
fj*— 1

2V Coshv, Sino +

Cosu ‘Sinhv

Cmhvsinv+rx?sl+in:

Sinhv. Cosv ) (1319)

-GET ‘ cosh V /

where, by definition,

The temperature drop acrosa the fluid from wall to wall
is then found from equation (1319)when z=r:

&=_c8 ( Sid V+sinw v
. )k?) Sinhocoshv+sinvcoso

(1320)

The temperature difference across the fluid for pure con-
duction is

$’8
(e,).=–T (B21)

The mtio of the actual temperature drop to that for pure
conduction is, therefore,

-t

or 1 Sin%+sinh%

‘r=~=V SiIlh O cosh V+SiU V COSV)
(B22)

The-se equations apply equally well to force fields other
than gravitational, if the constant g is replaced by the con-
stant of the force field of interest.

EXP-ENTAL APPARATUS

A schematic diagram of the experimental equipment is
shown in figure 1. In order to simulate infinite parallel

plates, an annulus formed by two concentric stainless-steel
tubes was used to contain the fluid. The resulting anmdus
was 10)4 inches long with an outside diameter of 1% inches
and an inside diameter of 1 inch, Thus, the spacing s be-
tween the walls was % inch. The tube walls were % inch
thick. The outer tube was heated with a Nichmmc-wim
element spiral-wound around the tube, with a wire spacing
of % inch, which probably gives fairly uniform heating of the
hot wall. The inner tube was cooled by forced air. The
coolin@r-passmge length-to-diameter ratio was s4. A wire
in the form of a helical spring was inserted in the cooling
passage to increase the heat-transfer coefficient. This
system should provide an essentially constant henbtransfer
coeilicient, which is necessary to provide uniform cooling of
the cold wall -with a linear variation of wall temperature.
The cooling-air-flow rate was measured with a calibrated
rotameter.
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Figuro l.-Sohomatio diagram of axperimontal appsmtue for moaaurlng
heat transfer by free convection in an annulus ussd to simulate
paranol plates.
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Figure 3.—Dhnensionless temperature Profik for various vake of
product of Prandtl number and modiiied Graehof number.
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Figure 4,-Theoreticrd variation of ratio of actual temperature diEer-
ence across fluid ta temperature difference for pure conduction with
product of Prandtl number and modified Grashof number.

The electrical power was supplied by a transformer with a
variable secondary voltage and rated at 1 kva at maximum
voltage. The electrical power input was measured with a
calibrated ammeter and volh-ueter. All temperature were
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Figure 5.—Temperature mersasmesnentsof heated and cooled walk of
te9t seation. Heat flq 1300 Btu per hour per square foot; Prandtl
times Graahof number, 3480; temperatwsdifferanae ratio, 0.389.

measured with iron-constantan thermocouples and a self-
balancing potentiometer. The thermocouples used to meas-
ure wall temperatures were set into slots milled axially into
the tube walls. The thermocouple leads were enclosed in
Inconel tubing laid in the slots. The thermocouple junc-
tions were covered with insulating cement, and the slots were
then filled with silver solder and fished off flush with the
tube surface.

IHWILTS AND DISCUSSION

ANALYTICAL

The dimensionless veloci@ and temperature, which can
be calculated from equations (B17) and (1319),rwpectively,
are shown graphically in figures 2 and 3 for a few values of the
product of I%andtl and modiiied Grashof numbers. The
equations show that the dimensionlessvelocity and tempera-
ture depend only on this product and the position in the
channel. The Grashof number resulting from the analysis
di.ilersfrom the conventional Grashof number insofar as the
temperature d.iiferenceusually apptig is replaced by the
temperature gradient and the characteristic length appears

.as the fourth power instead of the cube. The product of
Prandtl number and Grashof number is sometimes referred
to as the Rayleigh number.

The velocity proiiles of iigure 2 show the point of maxi-
mum velocity moving closer to the wall as the Rayleigh num-
ber is increased. It is felt that this fact, in combination with
the stabilizing influence of the vmll, would tend to inhibit
the occurrence of turbulent flow.

The contribution of convective flow in the heatAransfer
process can best be seen from the ratio of the actual tempera-
ture drop across the channel to the temperature drop for
pure conduction. This ratio, which is the same as the ratio
of the molecular to the apparent conductivity, can be ob-
tained from equation (3322) and is plotted in figure 4. For
lsxge values of Pr(%, the actual temperature drop across the
fluid is less than %the temperature drop for pure conduction.

EXPERIMENTAL.

A typical plot of measured wall temperatures for large
temperature gradients is shown in figure 5. WM uniform
heating of the hot wall and constant heathansfer coefficient
on the cold w-all, the temperature gradients on the hot and
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cold wallsare constant and equal, except for the extreme ends
of the test section. Data were not obtained to verify the
assumption of uniform temperature gradimt throughout the
fluid.

For small temperature gradients the wall temperatures
were linear, but the gradient on the heated wall was larger
than that on the cooled wall. The assumption of uniform
temperature gradient throughout the system k, therefore,
invalid for small temperature gradients. With water as the
test fluid and with %-inch spacing between the plates, the
minimum value for which the assumption of uniform tem-
perature gradient is valid is approximatdy 400 F per foot.
Additional data are required to determine this limit more
accurately. The data presented in this report are for
temperature gradients of 40° F per foot or greater.

Because of the end tiects on the flow and because of the
heat losses from the ends of the test section, it was impos-
sible to obtain a heat balance between the electrical heat
input and the enthalpy rise of the coolant. M&surements
of the radial temperature drop through the immlation sur-
rounding the heater indicatid a negligible radial heat loss.
In that section of the tube where the wall temperature varies
linearly, there is no net axial conduction in the wall. Hence,
the uniform heat flux (as calculated by the electrical heat
input) that enters the wall is transmitted directly to the
fluid. The heat loss is limited to the ends of the test sec-
tion and, therefore, does not affect the results of the test.

The calculated temperature drop through the walls con-
taining the water was negligible compared with the tempera-
ture drop across the water, and, therefore, the measured wall
temperatures were taken to be the temperature of the sur-
face adjoining the water.

The temperature drop across the fluid for pure conduction
MOwas calculated from the equation for an anmdus given
in referenm 4:

At, =4
r. log.(r./rJ

k

where ~ was calculated from measurement%of the electrical
heat input.

The physical properties used in evaluating Prandtl num-
ber, Grashof number, and the temperature drop for pure con-
duction were obtained from reference 5 for saturated liquid
water, except for the coefficient of thermal expansion ~.
Values of the coefficient of thermal expansion of water were
taken from reference 6 and are plotted in figure 6. These
values are mean values for 10 temperature change. Inae-
much as /3 is a function of temperature, different mean
values would be obtained for larger temperature increments.
The properties were all evaluated at the bulk temperature
of the water for each test. For flat plate, the bulk tem-
perature is the center-line temperature halfway between the
ends.

Figure 7 shows the ratio of the actual temperature drop
across the fluid to the temperature drop for pure conduction
plotted against the product of Prandti and Grashof numbem.

The data points on the @-me are the experimental remlta
taken with water as the test fluid, and the curve is tho result
of analysis taken from figure 4.

COMPARISON BEITVEEN ANALYSIS AND EXPERIMENT

Inasmuch as no temperature measurements wore made
within the fluid, a comparison between theory and mperi-
ment can be made only for the over-all heat-transfer results.
Except for the random scatter of the hint-transfer data shown
in figure 7, good agreement is obtained between theory rmcl
experiment. Inasmuch as the same a.ammptionswero used
in references 2 and 3, the agreement shown hem lends sup-
port to the more general analytical treatment given in these
references.
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The effect of the curvature of the walls on the experi-
monttd results is urdmown; but this effect is believed to be
minimized, because the data are in the form of the tempera-
ture rutio with this effect included in both the numerator
and the. denominator. A theoretical investigation for an
mnmlus is necessary to permit a comparison between theory
and experiment with larger diameter ratios for the annulus.

In order to determine the upper limit for which the anal-
ysis is valid, it is necessary to obtain data at higher values
of tho product of Prandtl number and modified Grsshof
number,

The following symbols are used in this report:
Al, AZ . . . constants

a

&, h
(7
Cp
D
F.

Gr

&?
i
k
Pr
P
Q

f!

q:’
r
Tt
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APPENDIX A

SYMBOLS

TFEft-’
. constants
constant of integration
specfic heat at constant pressure, Btu/(lb) (“F)
operator, hjax
body force in z-direction, lb/(h@(sq ft)

at
4TPsfi~z 84

modified Grashof number, , dimebionless
u=

acceleration due to gravity, 4.17X108 ft/hrl
-J-1
thermal conductivity, Btu/(hr) (sq ft) (Ol?/ft)
Prandtl number, cpp/k,dimensionless
pressure, lb/sq ft
heat flux at w-all,Btu/(hr) (sq ft)
heat flux at outer w-allof anmdus, Btu/(hr) (sq ft)
1/2 pkLt8 SpfLC@, 8/2

inside radius of anmdus, ft
outside radius of annulus, ft
plate spacing, ft
temperature, ‘F

For the conditions of the problem stated in
S1S, the general energy equation reduces to

k av at— —.
w, ati w rz

Similarly, the NavierStokes’ equations
flow reduce to

g=cl

a~w_o
F.—g g+Ll ~,—

CONCLUSIONS

For the range of conditions investigated, the simplifying
asmmptions used in the analysis for free convection in
channels oriented in the direction of the body force am
reasonable and lead to accurate quantitative results.

Lmvra FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COMMITTE13 FOR AEROIiAUTICS

CLEVIILANB, Oreo, ~eptember 8, 1954

tf

k
t_,
u

v

w

w“

x
z

B
e

&

(0,)6

e*

P

P

$%

APPENDIX B

DETAILS OF

the ANALY-

@l)

for incompressible I

(332)

The body force under the action of gravity is

F.=—gP (B3)

Since the pressure is independent of z, then ~ is inde-

reference temperature, ‘F
temperature at z=r, “F
temperature at z= —r, “F
ax/{2, dimensionless

velocity, ft/hr
at

wf@# ~z
dimensiordeasvelocity, ~,

z

transverse coordinate, ft
longitudinal coordinate, ft
coefficient of thermal expansion, ‘F-I
t—t_,,‘F
t,—t-,, “F
temperature d.iflerence across fluid for pure con-

duction

dimensionless temperature,
(t–t_,)k

~’8

viscosity, lb/(hr) (ft)
densiw, lb/cu ft
ratio of actual temperature difference across fluid

to temperature difference for pure conduction

ANALYSIS

pendent of z and can be evaluated at any value of z. It is
~ hae %=0. Then,convenient, however, to evaluate — w

from equations (B2) and (B3),

%=–P, (334)

where the subscript j denotes a reference condition where
a%
~2=0. Cbmbining equations (B2), (B3), and (B4) gives

()
a%

gpl-$=— P az9 m

From the definition of the coefficient of thermal expansion?,

~=l+f? (t—t,) (B6)
P
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Combining (B5) and (336) yields

(137)

The reference temperature ~ is a function of z and varies
linearly with z as does t, according to the assumption of
constant temperature gradient. The velocity w is therefore
only n function of x, and its derivative is written as a total
derivative.
Differentiating equation 037) with respect to z gives

Differentiating with respect to z again gives

Comb@ equations (B1) and (B9) yields

038)

(339)

(B1O)

~+a%o=O

The solution of this homogeneous equation can be obtained
by using the operatir D:

(D’+a~w=O

(D’+ M)(D’–M)W=O

(D+ifia)(D-ifia) (D+ Jia)(D-JZa)w=O

10g‘G ‘=C
~c-?”=w

(B12)

Similarly, from equation (1311),

(1313)

farm— ——
w=A3e @e @ (1314)

fa.z m_—
w=A{e@e-@ 0315)

The general solution is equal to the sum of equations (1312)
to (B15), or

w=e-i” (Ale”+A&’)+ef” (Aae-M+A4e”)

CM

‘hwe ‘=Z

Using the Euler formulas

e-iu=cos “—i sin u

ef”=cos u++ sin u

and the conversion formulas

e“=cosh u+sinh u

e-u= cosh u—sinh u

and letting

B1=A,+&+A,+A,

Bs=A1+&–As–A2

B,=i(A,–A,+&–A,)

B4=i(&–A,–A,+A,)

the velocity equation becomes

W=B1 COS u cosh U+BJ COS U sinh u+B3 Sin U cosh u-t B4

Sinusinhu (B16)

The constants of equation (J316) can be evaluated from
ihe boundary conditions. There are four boundary condi-
tionsrequired to determine the four constanti. The vcJocity
it the bounding walls must be zero, while the boundary con-
ditions on the temperature are given by the temperature
yadients. It can be shown from equation (331) that, for
he case of interest here, the temperature gradients at the
mo walls must be equal. Integrating equation (Ill) gives

$[(%)z.r-(%)%.-l=%J:r
!’or a system closed at both ends, there is no net maas
hrough-flow; therefore, with constant density,

sr

W dx=o
-r
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Consequently, the tmnsverm temperature gradients at the
two walls must be equal. The boundary conditions are
espressed mathematically as

Wz.r=o

w=. .r=o

When these boundary conditions are imposed on equations
(338) rmd (B16), the constants of equation (B16) are found
to be

B,=O

4q7v
Bz=–—

sin V cosh V

t (sin–vcos o+cosh v sinh o)
PW ~z

.
4q”v

B,=—
Cosvsinhv

bt (Sii V COS v+cesh V SiIih V)
WA ~z

B4=0

Substituting these values for the constants of equation (B16)
gives the equation for the velocity in dimensionless form:

(
Vx Vz m

SiIl; cosh ~ SiIlh ~ COS ~

wP=4v cosh V—Sillh V

)

@17)

&~ ~+=

Differentiating equation (B17) and combining with
equation (J37) result in an equation for the temperature in
dimensionless form:

(
.Vx

— cosh
tk tji 1 ‘mr

: sinh:cos~
—= ——.

)
~s f18 2V sinhv CW+fi O cosho ’18)

~+cosh u -+ COS u

The actual temperature cannot be determined from this
equation, because the reference temperature tfisalso a func-
tion of 2.

The di.tlerence between the wall temperature and the
temperature at any point in the fluid at the same value of z
can be determined from equation (B18). From the definition
of 6*, equation @318) become-s

@=–

( I )~Sinhv CosV+sidl;co.+ Coshvsinv+cosl+i+

% Cosho “----+~v Sinh v Cosu
+—- Cosht)Slnv

(B19)

The temperature difference w-all-to-wall can be found from
equation (1319)when z=r:

The temperature di.fkrence across the fluid for pure con-
duction is

(O,).=+! 0321)

The ratio of the actual temperature drop to the tempera-
ture drop for pure conduction is

0, 1( singV+sinhi v
~r=~=; Sinh v CoshV+sin v cm v) (B22)

From the definitions of v and a,
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